
Alireza Sadeghi Nasab - 1399/10/11

Why does it take so
long to build sofware?

About the Author

• Why does it take so long to build software?

• Why is building software so expensive?

• Why is my team delivering software so slowly?

• Why am I perpetually behind schedule with my software?

Problem Definition

 Essential (Inherent) Complexity

 Accidental Complexity

Different types of Complexity

Example

 Buying a Coffee Printing “Hello World!”

Words of Wisdom

You can’t solve a
problem without
some accidental
complexity

How does this apply to software?
 The real revolution in software over the last 20 years has been the

drastic reduction in the ratio of essential to accidental complexity

 The Proliferation of open source frameworks and libraries has been
the most powerful force for reducing the amount of accidental
complexity over the last two decades

 The amount of code required to solve business problems versus 20
years ago has been reduced by an order of magnitude

NULL

 So you would think that creating
software would be an order of magnitude
faster than it was back then, right?!

 Other phenomenon have been
occurring concurrently:

 We are asking more and more of our
software

 The volume of software within
companies is exploding

 The pace of new technology adoption
is increasing

We are asking more and more of our software

 We are constantly demanding more and more from our software

 What both consumers and businesses expect from software has
been increasing rapidly

 We expect software to do so much more than we did 20 years ago

 As we build these larger and more feature rich applications, in order
to keep them reliable, functional, and understandable we have had to
change the way we build software

Changes that we’ve seen across the industry

 Source control

 Automated Testing

 Splitting it up

 Specialization

 Infrastructure automation

 Frequent deployments

 Multiple devices and form factors

The volume of software within companies is exploding

 The more software that exists within a company, the more overlap
between systems there is, which means that different systems need
access to the same data in order to function

 As systems proliferate, and take over all aspects of business
operations, they start to overlap more and more until nothing can fulfill
its needs without integrating with a dozen other systems

The pace of new technology adoption is increasing

 While using a bleeding edge tool might give you performance in some
areas, the newer it is, the more you’re going to feel the pain of
supporting it

 The earlier you adopt a technology, the more pain you’ll experience
as it grows and matures into a tool that is useful to a wide swath of
users

 Balancing the gain of leveraging a new technology with the pain that
comes along with its use is something that technologists have been
struggling with for a very long time

Turning off the lights!

 We now find ourselves in a world where being able to sift through the
avalanche of tools, frameworks, and techniques to pick out the ones
that are useful (and might be around for longer than 6 months) is an
incredibly valuable skill

 If you’re not careful, grabbing unproven new tools or frameworks can
have a detrimental effect. They can lead to a ton of accidental
complexity, or even worse, a dead end if that framework dies off
before crossing the chasm.

Is there hope?

 There are certainly more reasons regarding why building software
takes so long. Things such as business needs changing more rapidly,
enterprise architecture standards, or an increased emphasis on
security

 The point is that what we are building in 2020 barely resembles the
software we were building back in 2010, much less in 2000, and that is
for the most part a good thing.

 However, there are some downsides. It feels like we have returned to
a point we were at in the 2000 to 2007 timeframe where every
application was being constructed using the same tools, and many of
those tools are getting progressively more complicated

Is there hope? (cont'd)

 Many of the tools and frameworks that are now popular are coming
out of large organizations that solve problems that many businesses
don’t have

 Because of this many smaller and medium businesses are finding
that their ability to execute on software is diminishing rapidly and they
can’t figure out how to turn it around

 They have started to turn to low-code and no-code walled gardens in
order to increase the pace of development, but in many cases they are
crippling the functionality, lifespans, and ongoing maintenance costs
of the systems they are building with these tools

Useful Links

[1] https://www.simplethread.com/why-does-it-take-so-long-to-build-
software/

[2] http://worrydream.com/refs/Brooks-NoSilverBullet.pdf

[3] https://medium.com/background-thread/accidental-and-essential-
complexity-programming-word-of-the-day-b4db4d2600d4

[4] https://a16z.com/2011/08/20/why-software-is-eating-the-world/

https://www.simplethread.com/why-does-it-take-so-long-to-build-software/
https://www.simplethread.com/why-does-it-take-so-long-to-build-software/
https://www.simplethread.com/why-does-it-take-so-long-to-build-software/
http://worrydream.com/refs/Brooks-NoSilverBullet.pdf
https://medium.com/background-thread/accidental-and-essential-complexity-programming-word-of-the-day-b4db4d2600d4
https://medium.com/background-thread/accidental-and-essential-complexity-programming-word-of-the-day-b4db4d2600d4
https://medium.com/background-thread/accidental-and-essential-complexity-programming-word-of-the-day-b4db4d2600d4
https://a16z.com/2011/08/20/why-software-is-eating-the-world/

Thank You!

